
6 7 h ~~~~9~~~0 4 1 12 13 74 75
YEAR

FIG. 18 SAMPLE FOR CHOOSING COMPONENTS FOR FUTURE COST

(PRICES OF RTL & TTL GATES) : Blakeslee 1 21

62

4 
• 

55 5 w — .5. —5- *- - 
- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 5—

- - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



—--5 -

MICROPROCESSOR FABRICATION PROCESSES

TECHNOLOGY CYCLE TIME SPEED POWER PACKING I
(usec)  PRODUCT DENSITY 2(pJ ) (ga tes/mm

1972 PMOS 20 40 30

1973 NMOS 2 10 100

1974 TTL .2 100 10

1975 IlL .2 .5 100

FIG. 19 CIRCUITRY CAPABILITY IMPROVEMENTS : McPhillips 1 8]

63

— ~S — S S~4 — — ~~~5 5  — — - -5— — _SS_S_S7 — — 5.- -.555 — - .5- , s t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S



4 . 2 . 4  Ch ip-Set Family Size

Chip-set family s ize is the fourth attribute in the

selection algorithm . It may be stated as follows :

Decide what types of chip-set families would be suitable

in the system design .

This attribute may be broken down into the following key values:

1) Single Chip CPU

2) Bit Slice

3) Divided-Function Chip-Set

4 )  Sing le Board Computer (Kits)

5) Single Chip Computer

These key values divide microsystems into classes according to

their architectural arrangement. Specifically these are : those

microsystems providing a simple , yet complete , controller and

memory on one chip to form a Single Chip CPU ; those dividing the

working bit length into some convenient manner which allows for

expanding to any word size by simple interconnection of identi-

cal chips ; those d iv id ing  the I/O , control , and memory into

separate (but combinable) chips to form a Divided-Function Chip-

Set; those providing a complete microsystem on one board ; and ,

lastly, an area to contain future possibilities such as a

universal logic module which could act as a single building

64

.. :i :i

~

±

~ 

-



- ~ S _~~ • • 1

block , or single ch ip, with which any particular architecture

could be built.

This step is important  becau se it f orces ear ly decisions

concerning the size , configura t ion  and f l ex ib i lity required of

the selec ted microsystern in the overall sys tem design. A more

detailed discussion of each of these key values is presented

below :

Single chip CPU. These microsystems were the first micro—

systems out on the market and are the least expensive micro-

systems available. With this advantage of cost, however , comes

complexity in their use. Each microsystem in this area is

vastly different from any other competitor ’s and requires the

user to reorient his training and design around that micro-

system. Also , these systems suffer from lack of regular support

chips in their families. What results is that the user must

design his system around the microsystem, not simply in tegra te

it into a present system.

Bit slice. The bit slice architecture is an approach which

o f f e r s  the advantage of f lex ib le  word length . All chi p

funct ions  are created to work on some base bit size which may

be readily expanded by a simple interconnection of chips. This

S 
important variation to the fixed word length microsystem design

uses either 2 bit or 4 bit ‘ slices ’ which can be used to create

8- , 12— , 16— , 24— , and 32—bit wide architectures The longer

word length for both addressing and instructions provides

higher throughput and easier programming while the shor ter

65

I ~
- 5-
~ T~~~~~5~~~~ -~ - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

55-------55- --- .



-~~~~~~~~~~~~ 
- -

4-bit word length uses less hardware and smaller memories.

This modular approach is used to build up the reg isters ,

arithmetic logic unit (ALU) and I/O data lines to 32-bit

widths . This concept has been used for some time but software

support and I/O interfaces for all models has not been practical

in the past.

Divided-function chip-sets. These microsystems are those which

incorporate on one chip those characteristics which work closely

together. Separate chips are so designed as to be easily

interconnected to form the final desired architecture. This

type of arrangement offers many advantages , including maximum

flexibility , low cost chips available due to increased yields

(because a larger number of smaller chips may be formed from

a sir’gle wafer of silicon) , and it is possible to choose which

functions are desirable for the design , without being forced to

buy extraneous functions. Also , chip-sets are generally con-

struc ted with “ease-of-interfacing ” in mind so that there is

generally more pin-connection room , and standardizatio! ian

in other types of sets.

Sing le board computer (k i t s) .  Many manufac tu re r s  are now going

to a single board approach which , in effect , gives the user a

predesigned microcomputer he may simple plug into his system .

Such a system consists of a central-proces~ ing u n i t , read/write

and read-only memories , and parallel and serial input/output-

interface components all placed together on one board. Three

advan tages can be observed from this arrangement. First , the

66

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



primary reason for the use of a sing le assembly of LSI devices

ra ther than  a mul tiboard system is econom ic. Ex tra boa rd

assembl ies are costly in themselves and need related equi pmen t,

such as backplates and housings , that also add to the cost.

Secondly ,  compactness and low power consumption are often re-

quired in products. Using LSI for all key computer functions

possible reduces power consumption and allows a higher func-

tional density than conventional subsystem assemblies. Lastly ,

a board containing all generally needed computing func tions

could be used as a standard part and thus take advantage of

high product rates to lower its cost as f a r  as possible, keep

inventories simp lier , and hel p standardize certain aspects of

system design.

The same general idea is also available as a ki t

which must be assembled before use. Such kits are very useful

for very small production because their cost is lower than

preassembled boards and the hands-on experience gained in their

construction is invaluable , but very rapidl y the cost of the i r

construction eats up any savings to be obtained from kit

purchasing. In general , kits are useful only to the experi-

menter or hobbiest .

Single chip computers. The single chip computers of today are

very simple machines and very limited in function. As its

t i t l e  says , it is a complete computer on a single chip. This

of fe rs the advantage of a small chip count (and thus lower

overall  system cost)  , fewe r interconnect ion problems , and

67

- 
_ _ _ _  _ _ _ _



S -- ~~~~~~~~~~~~~— - 55 ------ - 55-
—55 55-

freedom to look at the whole microsystem as a simp le blackbox.

However , this approach suffers from inflexibility , higher single

chip costs due to size , comp lexity of manufac turing , and

smaller yields . It also forces the user to accept all the

~ internal functions of the chip (and pay for them) even if his

design does not make use of them.

The chip-set size criterion describes the complexity

of each microsystem , its ease of use , and the flexibility in

design afforded by it. It is possible to obtain anything in

the range from an isolated , simple CPU (con troller chip ) which

operates as , and must be treated as , a discrete component; to

a microcomputer board fully operational except for the tele-

type. For automotive-type applications , for example , it may

only be necessary to have a small monitor do a few simple

calculations every second and report any detrimental changes;

for this a very low cost , simple CPU chip may fit perfec tly

into the design. At the other extreme , it may be desirable

to have a OEM microcomputer board which may be simply plugged

in and used immediately for intelli gent terminal type opera-

tions .

Smaller families may become obsolete and be phased

out of a company ’s product line , while larger families have a

tendency to evolve into new technology wi th  the in t roduct ion  of

down-ward compatable microsystems by microsystem manufac turers ,

making use of older developments possible.

4 . 2 . 5  Sof tware  Analys is  Cri terion

68

~



- 55---- ---

The fifth attribute in thc selection algorithm is

the sof tware anal ysis criterion and may be stated as follows :

Decide on the data struc tures required in the design and

any special intructions; and nc~ e the requirements , or

res t r ictions thu s imposed.

Before  describing the key values , it will be helpful to study

a portion of an article by Theis [14]:

“In microprocessor applications the designer-programmer

is try ing to implement a design (previously done by logic

designers on pa per)  through on-line programming of the micro-

processor. Instead of using gate logic such as AND, OR , NAND

and NOR , the designer—programmer uses the mask , compare , and

jump instructions. Most microprocessor applications involve

a mixture of control operations and application computations

which are interleaved in the program mainstream . Assembly

language is predominant. Because of modularity and the obvious

repetitious nature of so many operations , subroutines are used

extensively , and subroutine nesting is facilitated by the

stack register organizations in all these units.

Software development for microcomputers is done several

ways :

• 1) A designer-programmer may spend lots of time using

paper tape to assemble with the microcomputer itself. In

add ition to the assembler , loaders for the assembled programs

69

- - 
S_ 55• .5 Sfl~~

5

.r ~~~~~~~~~~~~~~~~~~~~~~ 
- S~ S~ 5 y  - ~~~~ ..s.r5 -

- -—- —-~~~~~~~-— ~~~~~~ 



and diagnostics to check out the hardware are available to him.

Though not always offered , a monitor or exe cutive rather than

a full-blown operating system is sufficient for microcomputers

since the machines are used in dedica ted applications , not for

general-purpose programming .

2) The designer-programmer may instead use a large-scale

host computer (e.g. IBM 370) available through a time-sharing

service to access an assembler which is usually written in

FORTRAN (such program products are usually refe rred to as cross

assemblers). An instruction simulator (also written in

FORTRAN) executes the cross assembler output code as if it

were being executed in the microcomputer. Higher level lan-

guages (e.g. Intel ’s PL/M ) are also avai lable  to save the

programmer time , but do not relieve him from debugging and

checking out the compiled code, an operation which requires an

understanding at the machine operation level.

3) A third approach uses a combination of hardware and

software called a prototypirig system. Prototyping systems

provide program assembly, on—line execution and debugg ing . A

general purpose prototyping system allows the designer-pro-

grammer to be more creative and productive in the design of a

particular microcomputer application . As a result companies in

this business either design a prototyping system as their

first product or buy it. Using an on-line teleprinter , the

designer-programmer assembles , edits , and stores the program

in RAM associated with a computer in the prototype system .

70

* S5 •

~

5

~

5_ 5

~

55 

5 - ‘~~~~V~~I~~ s - SS~ S~ r’— —,.—- —5 
55 

—--S
~~ 

5- ~~r-~~ -~~~~~~
S 55 _5_ 5 _à~S•S_S_ __

~ 
- — ~~ -



Switching to the ‘opera te ’ mode the microprocessor in the ap-

pl ica tion system accesses the progr am in the pro totyp ing system

as if it were in its own ROM and check out begi ns. ”

This attribute may be broken down into the following key

values:

1) Resident Assembler

2) Cross Assembler

3) Monitor

4)  High Level Language

5) Instruction Simulator

6) Prototyping System

7) Special Instructions

The se key values divide the area of sof tware into levels of

complex i ty . (Tha t is , the more software design support modules

chosen by the user , the simpler his software production tasks.)

The most complex software development task is taken when just

r a resident assembler is chosen ; the tasks become easier as a

cross assembler is used ; and so on through to the ~rototyp ing

system support selection. Each of these key values is dis-

cussed in more detail below :

Resident assemblers. The most complicated software development

method to use, yet the least expensive , are resident assemblers .

Using this system involves learning a specific assembly lan-

71

5 5  -5~~
_SS - . 

‘~ — _ S —
55 —55 

- —  - ------ 5’ “



quage , programming in assembly language , and spend ing time con-

densin~ programs to fit the size restrictions of the resident

space . Debugging, a major portion of the software development ,

is -tn extremely lonq and arduous procedure.

Cross assemblers. A cross assembler translates a symbolic

represent ation of instructions and data into a form which can

be loa ded and executed later on by the microsys tem. By cross

assembler , what is meant is an assembler executing on a machine

other than the microsys tem , which generates code usable by the

microsystem. Initial development time can be significantly

reduced by taking advantage of the facilities of a large scale

— computer system such as its processing , editing capabilities ,

high speed peripheral capabil ity, and the previous experience

acquired by running the larger machines. An obvious disadvan-

tage to this scheme is that a small organization may not have

the larger computer to use , or cannot afford to rent one .

~~~ Monitor. The moni tor is a simplified OS , or a master control

program that observes , supervises , controls, or verifies the

operations of the system . When a machine is being simulated on

i t se l f , one has the special case of a simulator with this

-
S simula tor being considered the monitor , or trace routine .

Such programs are used to help in the debugging of user pro-

grams since they print out step-by-step accounts of how the

simulated program behaves. A typical system monitor loads and

S 
punches paper tape , displays and alters the contents of memory ,

~~~~~~~~~~ 

.
- fills memory with constants , executes programs in memory , moves

72

. •5 .~~, S -,
- - -  -Sr - 

-- 55 —5--

-S. 
.
~~ 

~~~~~~~~~~~~~~~~~~~~~~~ 
_

~~~~~~
. 

T.. ~~~~ ~~~~~~~~~~~



-e

~~~~~~~~ 
S ( S 5 ;Sy~~~~~~

S
. 5- - - 

_ _

blocks of data i memory, and programs PROMs .

When the system includes a monitor , resident assem-

bler , and an editor , the programmer can prepare his program in

mnemonic form , load it into the microsystem , edit and modif y

it , then assemble it and use the monitor to load the assembled

program.

High level language. Tests performed by Intel 1 3] on sample

programs for microsys tems indicate a high level languaoc tiay

be written in less than 10% of the time it takes to write thL

program in assembly language , and wi thout much e f f i c i e n cy loss .

The savings in time is related to the fact that the pro- rammer

can define his problem in terms more fam iliar to him , rather

than terms more familiar to the computer. Debug and checkout

time is also said to be much less than that of assembly lan-

guage programs because writing in a high level language

encourages good programming techniques. Presented below is

part of an Intel report 1 31 on their own high level lanq iage ,

PL/M :

“PL/M vs ASS EMBLY LANGUAGE
As an examp le of comparative programming effort between
PL/M and as sembly language , a program to compute prime
numbers was written twice , first in PL/M , and then in
assembly language . The PL/M version was written in fif-
teen minutes , compiled correc tly on the second try (an
‘end ’ was omitted the first time) and ran correctl y the
first time . The program was then coded in Intel MCS—8
assembly language . Coding took four hours , program entry
and editing another two hours , debug took an hour to find
incorrec t register designation , the kind of problem com-
pletely eliminated by coding in PL/M . Results of this
one short test shows a 28 to 1 reduction in codinq time .

73



1T IT D~~
:;
~~~~~~ 

1- •

This ratio may be somewha t high , overall ra tio in a
mix of programs is more on the order of 10 to 1.”

ih~ PL,’M program took 15 lines to encode , the assembl y language

program approached 100 lines .

Instruction simulator. A simulatoi is a computer language

written in some high level language which provides software

simulation of -~~e m icrosys tem , along with execution commands

f rom per ipheral devices such as a terminal , card reader or

disk file. These execution commands allow manipula tion of the

simulated memory and registers. An excellent feature is that

operand and ins truc tion breakpoints  may be set up to stop

execution at critical points in the program to allow closer

stud y . Tracing fea tur es may also be provided which allow for

monitoring of the CPU. As in the cross assembler scheme , ac-

cess to a larger computer is a requirement of this approach

which may prove inhibitive to smaller users .

Prototyping. As Mr. Theis stated , prototypirig systems use a

combination of hardware and software to provide general pur-

pose simulation of program assembly, on—line execution , and

debugging. A prototyping system is most useful for those

users who will be designing multiple systems , and don ’t want

to pay for a specific simulator for each individual design. A

pro totyp ing system for just one task may prove to be more ex-

S pensive than a simpler simulator.

~pecial instructions. For many tasks , a particular instruction

(or set of instruction types) in the microsystem ’s ins t ruction

74

~~~~ 
— - —  

~~~~~~~~~~~~~“-- S - - ~~~~~~~~~~~~~~~~~~~~~~~~ 
55



S5_SS.5~~ - — ~~

- 

- - 

5 5 

_ _ _ _ _ _ _ _ _ _ _

se t may provide a par ticularly important operation to be re-

quested by a sing le command rather than a program sequence . In

fac t, some special instruc tions may not even be emu lated by a

program sequence on some microsystems . In this case , one mus t

either do without the special instruction , or else eliminate

all those which can ’ t handle it.

Sof tware is the most expensive par t of most systems

today , and much e f f o r t  is curren tly being made to unders tand

the comp lexities involved i t developing and main tain ing it.

The most commonly used method of comparing the software as-

pects of microsystems is to use benchmark programs. These

benchmark programs are simp ly the implementation of a basic

programmed func tion on each microsystem under test and the n

evalua ting each microsystem according to its performance in

completing the assigned task. However , to comp letely analyze

and compare the sof tware of microsystems is , today , a monumeri~ el

problem. In general , it seems tha t the easier it is for the

prog rammer to converse in his own na tur al language , the fas ter

and better he performs .

4.2.6 Memory Requirements

Th e memory requirements at tr ibu te may be stated in

the following terms :

Decide the types of memory required ( RAN , ROM, PROM) ,

approximately how much of each type is necessary for

the design , and how they are to per form .

I
- , 

S

1.11,, - S •~ S 5S~~S •~~~~ - - - 55 

~~ - ~S . 5

- --- - ------- —S- - -5--- S -- _•~~~~~~~~~~ _5555_-555 - - - 55- - —- -



This attribute may be broken down into the following key

values:

1) Type/Size

F 2) Microprogrammable

3) DMA

4) Asynchronous Operation

These key values are discussed in more detail:

Memory section. The memory section of a microsystem usually

accounts for a major portion of the chips. All three kinds of

memory are used in microsystems . Random access memory (RAM)

chips are used primarily for variable data and scratch pad .

Read—Only Memory (ROM) chips are used to store instruction

sequences. Programmable Read-Only Memory (PROM) chips are used

for quickly tailoring the general purpose microsystems for

specific applications. Because of the bus and word—size

limitations of the microprocessor , it is not advisable to

S choose a system with more than 64K word memory . However , the

amount of memory allotted should be based on a very conserva-

tive estimate of needs , because software costs go out of sight

as the computer approaches 100% memory utilization .

S RAMs are expensive compared to ROMs , but the data in

the ROMs must  be stored at the time they are created , so there

is a production delay associated with them as well as a “ p r o—

• gramming ” cost for mask development. PROM chips , some of

76

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  55 -4



~~iii.r 
5— 55— — - 55 - 55_S-S 5 5 5 5  5S5 S_•_SS 55 ~~~~~~~~~~~~~~~~~~~~~~~~~~ S SSS 55~5 _•S5_ ___S5__~S~•SS_5__55S~5 - S _-.55_-S S 

~ ~~~~~~~~~~~~~~~~~~

which can be erased by ultraviolet light and reprogrammed , are

used in place of ROMs when small quan t i ties are involved , be-

cause of their reusability property . This is not yet cost-

justified for large runs.

Pin limitations off-chip to memory resul t  in memory

I/O times being f a i r l y  hi gh ; t he r e fo re, mos t architec tures use

an on-chip pushdown stack of some sort rather than requiring

all storage to be contained in memory . Thus , the stack helps

the programmer minim ize register transfers ,f acil i ta tes  coun ting

and sor t ing, and limit s needless transfers to and from main

memory . 
-

Microprograrnmability . The technique of microprogramming has

also proven to be a very practical approach for  microprocessor

des ign.  The primary advantages of putting the instruction set

in control store are low cost , open-ended design and high

utilization of LSI standardized products. These advantages are

not without some disadvantages, however. When new instructions

or f unctions are put in the microcode , the original designer

has to change the support software , such as cross assemblers .

The advantage of a microprogrammable archi tecture is there fore

limited if the ins t ruction set is to be sig n i f i cant ly modi f ied.

Thus , a microprogrammable processor is one in which the in-

s t ruction set is not f i rmly fixed. The instruction set

is stored in a memory , the contents of which are fe tched and

used to control the inte rna l  data paths of the system .

(Because the i n s t ruc t ion  is stored in a memory , it may be

- - - jts— 55.55.57? - - — ‘•‘S-S~ -S—~~~ ”- _.5~~!_S.S. __~~~ ~55_~~ SS -5~•S~ - S~

— £~~~~~__5 —— 5~ 55 
5-~ 5S-555.555~~~~~~~ ~55ss -S ~~~~~ ~_S —



-~~~~~~ 
5 - _ S  -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 55——-- ~~~~~~-S55S55~~~ .5 5-55.55555-S -~~~~~~~ ~

ACCESS
TIME CENT/ BIT

MEMORY SHAPE tusec) TECHNOLOGY ( ‘~ 
100)

RAM 1024 x 1 1. NMOS 1.5

256 x 4 0.8 NMOS 1.6

40 96 x 1 l. * NMOS .4

25 6 x 1 0.07 SCHOTTKY 5.1

ROM 2048 x 8 1 2  NMOS .2

256 x 8 1. PMOS 1.2

1024 x 8 0 ,45 NMOS 1.8

512 x 8 0.07 SCHOTTKY 3.0

PROM 256 x 8 1. NMOS** 1.5

512 x 8 0.5 NMOS** 2.4

512 x 8 0.1 SCHOTTKY 3.8

256 x 4 0.07 SCHOTTKY 2.0

Notes : *Dynamic
**Erasable PROM

FIG. 20 A SUMMARY OF FEATURES AND COSTS FOR POPULAR MICRO-
PROCESSOR MEMORY COMPONENTS : Ogdin [111

78

~~~~~~~1TS 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

5—



-5- -- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

changed as easily as changing any data value in memory.)

DMA . W i th  direct memory access (D MA ) , waiting delays for mem-

ory access time are reduced by provi d ing sepa rate reg isters

for  the addresses , and s u f f icien t ext ra logic and data pa ths

to allow all aspects of actual data transfer to take race

completely independent of the central processing unit (CPU) .

In this way , wheneve r the CPU is not actually  accessing memory ,

the I/O channel can “steal a memory cycle ” f rom the CPU.

(Another popular name for DMA is cycle stealing access.)

Asynchronous. Memory organizations capable of asynchronous

operations can significantly affect the performance and flex-

ibility . This control function allows a microsystem to wait

for memory or I/O. A small system , in which all  components are

access—time compatible , may not require this asynchronous mem-

ory access , but as soon as one mixes memory types and speeds

(including refreshing of dynamic 4K types) , the need for an

asynchronous memory capability becomes crucial.

4.2.7 Bus Size Criterion

The seventh attr ibute in the selec tion algorithm ,

bus size criterion may be stated as follows :

Decide on the bus bit-width requirement of the system

based on the information of the previous attributes.

These buses may include internal connective buses and

ex ternal connectors , data buses , address buses , and

• instruction word buses.

79

I :- .5 5_i ~A1



- 55 
- 

5555555 -S ~~~~~~~~~ 5 s

This attribute may be more comp le tely spec i f ied  by d e f i n i ng the

f o l l o w i n g  key values :

1) Four—Bits

2 )  Ei ght—Bits

3) Sixteen—Bits

4) Other Sizes (12— , 3~~—bits )

These key values conveniently break microsystems into classes

imposed by the industry . Most specialists agree the word

length can be optimized for some applications , but that  most

word lengths will work for almost any application . The advan-

tages and disadvantages of the four different classes are dis-

cussed in more detail:

Four-bit. If the application is BCD arithmetic , 4-bit micro-

systems are ideal . If , however , high precision , or comrnunica-

tion with wide-word systems elsewhere in the system is re-

qu ired , four-bit microsystems prove to be too slow to compete

wi th the la rger word wi dth systems . This is because lar ger

width instructions or data words must be broken down into com-

ponents of 4-bit widths and transmitted one component at a

S 
time . This size microsystem does , however , enjoy a compari tive

• simplicity and cost advantage over larger systems if speed is

of limited importance.

Ei ght-bit. The eight-bit microsystems are the most commonly

used systems , especia l ly  in con tro l le rs .  They present ly o f f e r

80

~~~~~~ 55 —~~~~ - --—



S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the bes t per formance as general purpose type mach ines . To a

lesser degree , they suffer from speed bot tlenecks in processing

large word widths ju s t  as do the four-bit machines. However ,

they work well with byte size information .

Although the 8-bit microsystems now dominate the

market , the introduction of 16-bit microsystems has prompted

many 8—bit microsystems manufacturers to provide new enhanced

8-bit processors. Although 16-bit manufacturers refer to these

enhanced machines as only stop-gap measures , the enh anced mode l

manufacturers believe that the 8-bit microsystems are better

suited to the low-end of the processor market; and , according

to Wolff [161, should capture 35% of the dollars and even a

higher percentage of units sold (compared to 6% of total dol-

lars for the high-end 16-bit machines). The general impression

is that 8-bit machines offer the performance required for most

jobs , at a price lower than the 16-bit machines can now provide.

Sixteen-bit. The newest innovation on the market place is the

sixteen-bit devices. With the introduction of these devices a

big controversy is presently brewing over predict ions tha t

they will soon be edging the smaller width microsys tems out of

the market. Presently the cost is too high for them to be

truely competitive with the 8-bit machines , but their make rs

predict that the cost will soon be equalized. Advantages of-

fered by the sixteen-bit machines are quite clear in many

app lications. The foremost reason is the speed with which the

newest processor generation can now execute a program . Since

81

I~~~~~

—5- __i
~~~~~ :55 55 ~~~~~~~~~~ 55~~~~~~ -S 5~~~S - 5 ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - 5 S S ~~~~~~~ __ 5- S~~~~~55-S



- - 55---- — 55 — .55--
’- - --5- -S 5 _ 5 5 _ ___ __S-__ -- 55--

eight-bit machines handle 16-bit data words and instructions

by multiplexing in two cycling operations , the sixteen—bit

machines halve this time . This advantage also simplifies the

circuitry surrounding the m icroprocessor chip as wel l  as the

programs that must control the internal shuffling of data

between registers.

Other sizes. The other size buses have offered no real bene-

fits over the four- , eight- , or sixteen-bit microsystems .

They are harder to use and to support. These are character-

istically buil t of slice architectures and find their primary

use in applications that demand bus sizes other than the

- : standard ones.

In general , the biggest push in the industry now is

between the eight-bit and sixteen-bit machines. This should

be an in f l u e n c i ng factor in lowering the costs of these sizes

to their lowest levels. Other size buses seem to be doomed to

repressed demand and maintain their higher than optimum cost.

These ‘odd ’ size buses do , however , offer a noticeable cost

benefit in some applications because they more closely conform

to the requirements without providing excess computational

power.

The bus size and complexity depends on the type and

s ize  of the appl ica t ion , and the requirements concerning flex-

ibility and expandability . Smaller systems can take advantage

of recen t trends in microsys tem family components which allow

the sy stem bus to be no th ing  more than the bus o f fe r e d  on the

82

T .



-~~~

chip, while larger systems must be equipped with buffer ele-

ments or additional decoding logic to connec t more functions

to the sys tem bus . Thus , one must be careful when choosing

a bus structure that upgrading performance , flexibility , and

expandability are not impair ed. It is also important not to

narrow the choice of acceptable memory and I/O devices since

processor and memory speed can become the most valuable feature

in a sys tems product life .

4.2.8 Interrupt Capability Requirements

The interrupt capability requirements attribute in

the selection algorithm may be stated:

Decide on the importance and probability of interrupts in

the system , especially in regards to speed and nesting

requirements.

This attribute may be broken down into the following key values:

1) Single-Line Interrupt

2) Multilevel Interrupt

3 ) Vectored Interrupt

4) No Interrupt

These key values divide microsystems into classes dependent on

their type (and speed) of response to the si tuat ion  where the

CPU is interrupted to do something special before continuing

‘ 83



—55S -

with its next instruction.

This attribute is important because it recognizes the

f ac t  that certain appl ica t ions, or situations , may requ ire CPU

recognition instantly (least some irreversable action occur)

while in other applications nothing disastrous occurs by delay-

ing an interrupt request. The nature of most applications is

such that if there is any chance at all of having to service

any interrupt immediately, the CPU must be able to respond

immediately. A more detailed look at each of the listed key

values is presented next :

Single-line interrupt. The single-line (or single-level)

interrupt capability provides a single interrupt line . Multi-

ple interrupting devices must be OR-tied to that one line .

When any interrupting device wants service , it outputs a signal

to the CPU which discontinues the microsystem activity to

service the interrupt . However , the micropror~essor only knows

that one of the OR-lines has requested service , not specifical-

ly which line . The microsystem must therefore scan the network

to determine who actually needs service . This is usually done

by polling each connected device in turn and asking if it is

the interrupting device . A pseudo priority system is set up

by the ordering of the pol l ing , with the first device pollei

having the highest priority.

Multilevel interrupts. With multilevel interrupt capability

each interrupting device is assigned its own interrupt line .

In this manner , iden ti f i c ation of the device reques ting service

84

.5-
5— ~~~~ - 

~~5 .5 7? - •~5555 - - 5_5_55,~ 
5— 

——5- - —-S _ S
55 5 . _~~~ _ ~~~~~~~~~~~~~~~~~~ —~~~~~ ~~~- —- - S. 5.~~~~~~5 5 5 5~



•1 ~~~ 5~~55 _5•555 55~ 5 5 5 5 _ 555555.5~~ S SS_
~

will be immediate because the microprocessor does not have to

search for the device requesting the interrupt , as it knows

which line requested the interrupt.

One limitation of this setup may be that the number

of separate interrupt lines is usually very restricted (under

ten) , and any additional interrupting devices must be OR-tied

to one of the previously used interrupt lines. Priority is

us~ially set up such that those devices attached to one of the

iflterrupt lines have priority over all other lines , a second

line ha s priority over all other lines except the f i rst, and so

forth through all the lines.

Vectored interrupt. The fastest mode of interrupt operation

is vectored interrupt . In this case , the interrupting device

not only requests serv ice , bu t its interrupt also causes a

direct branch of the program to service the required interrupt.

Th us , a vectored interrupt causes a branch immediately to the

subprogram necessary to service it.

The three interrupt schemes presented , and no inter-

tupts , p lay an impor tant part in the responsiveness of micro-

compu ter systems . As wi th  most things , there is a cost-speed

trade-off involved here. The higher the i n t e r rupt ’ s speed and

capability , the greater the cost. Some applications , by their

very nature , must have high qual ity interr upts to work in real

time -- no matter what the cost. Others may require no inter-

terup at all.

85 

~~~~~~~~ 

~~~

_ 5 _ _

~~~~~

S

S~~~~~~~~~~~

5_ - - - 5 5  -5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



T 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
S~~~~~~~~~ - S - S 5 5 5 5 5

— 4.2.9 Power Supp ly Considerations

The T)ower supply consideration attribute may be

stated as:

Decide if the advantages of each remaining microsystem

justify its power supply requirements and costs.

This attribute is one that is often overlooked by desipners of

microsystems , but is genera l l y  being recognized as gobbling

up a substantial portion of a microsystem ’s bud get. Several

areas of concern should be addressed in this attribute :

1) Regulation required and the number of different

voltages required

2) Envi ronmental  cons iderat ions

These are discussed in more detail in the following sections.

Regulation and the number of different voltages required. The

importance of this key value is the direct relationship that

occurs between it and s ize , complexity , and cost of the power

supp ly necessary . As wi th  any sy stem , the more a power supply

must do (the number of voltages needed) and the greater the
S 

quality (regulation required) of its work , the la rger  and more

complex must its circuitry be , and the more it costs t~ d ’sior.,

build , and service it in the f ield.
S 

Environmental considerations. Many microsystem applicat in~-

S 86

- 
~~~~~~ 

r,.~~— .- — - - - —  -


